

VASISHTHA GENESIS SCHOOL, BARDOLI

(Academic Session: 2025-26)

Date: _____	Class: 6	Div: _____	Roll No: _____	Sub: Maths
Name: _____			Worksheet (CH- 6 & 16)	

Objective based worksheet

Q1. Choose the correct option and answer the following questions:

(i) Which method is used to change a fraction to decimal?

(a) Denominator \times Numerator (b) Denominator \div Numerator
 (c) Numerator \div Denominator (d) Numerator \times Denominator

(ii) $\frac{7}{2}$ in the decimal form is given by

(a) 35.0 (b) 3.5 (c) 3.05 (d) None

(iii) 72.003 _____ 72.0035.

(a) < (b) > (c) = (d) None

(iv) Decimal is denoted by a _____

(a) comma (b) semi-column (c) point (d) equal

(v) Convert the given fraction $\frac{4}{50}$ into decimal form.

(a) 0.8 (b) 0.08 (c) 0.0008 (d) 0.008

(vi) Convert the given fraction $\frac{5}{8}$ into decimal form.

(a) 0.625 (b) 0. 675 (c) 0.652 (d) 0.635

(vii) Convert the given fraction $\frac{5}{4}$ into decimal form.

(a) 0.125 (b) 1.205 (c) 12.5 (d) 1.25

(viii) The difference of the given decimals is $200 - 176.11$ is

(a) 23.89 (b) 23.98 (c) 32.98 (d) 32.89

(ix) Identify the Thousandths place in 3.3297

(a) 3 (b) 7 (c) 2 (d) 9

(x) Identify the Tens place in 507.31829

(a) 3 (b) 9 (c) 0 (d) 2

(xi) Subtract 2.05 kL from 6.525 kL is = _____ kL

(a) 4.475

(b) 4.52

(c) 8.53

(d) 8.575

(xii) Area of a square = _____.

(a) 4 x side

(b) length X breadth

(c) side x side

(d) side + side

(xiii) Perimeter of regular hexagon = _____.

(a) Side x side

(b) 6 x side

(c) 5 x side

(d) 4x side

(xiv) The perimeter of a square will be _____ if its side is 9 cm

(a) 81 cm

(b) 36 cm

(c) 12 cm

(d) 18 cm

(xv) If side of a square is given in cm, the area will be expressed in

(a) cm^3

(b) cm^2

(c) cm

(d) km

(xvi) The perimeter of a rectangle is _____.

(a) length x breadth (b) length + breadth (c) $2x(\text{length} + \text{breadth})$

(xvii) The perimeter of a square is 12 cm; its side will be _____?

(a) 48

(b) 144

(c) 3

(d) 4

(xviii) Perimeter of equilateral triangle _____?

(a) 3 + side

(b) 3 x side

(c) 4 x side

(d) 4 + side

(xix) The amount of region enclosed by a figure is called _____.

(a) Perimeter

(b) Area

(c) Interior

(d) Exterior

(xx) If the perimeter of an equilateral triangle is 36 cm, then the side of a triangle is _____ cm.

(a) 72

(b) 12

(c) 24

(d) 36

(xxi) The cost of fencing a square park of side 100 m at the rate of Rs. 10 per metre will be _____

(a) Rs. 4000

(b) Rs. 400

(c) Rs. 1000

(d) Rs. 10000

(xxii) If the side of a square is 25 m, then its area will be _____

(a) 526 sq. m

(b) 625 sq. m

(c) 256 sq. m

(d) 100 sq. m

(xxiii) If the perimeter of the rectangle is 40 cm, and its breadth is 8 cm, then the length will be _____

(a) 12 cm

(b) 24 cm

(c) 16 cm

(d) 8 cm

(xxiv) If the area of the rectangle is 96 cm^2 and one of its sides is 8 cm, the other side of the rectangle is _____

(a) 12 cm

(b) 24 cm

(c) 36 cm

(d) 18 cm

Q2. Fill in the blanks:

(i) Decimals having the same number of decimal places are called _____ decimals.

(ii) Every decimal can be written as a _____.

(iii) Six thousandths can be written as _____.

(iv) The place value of a place decreases by _____ times, when moving from left to right in place value chart.

(v) 42.003 in words will be _____.

(vi) The expanded form of 324.67 will be _____.

(vii) 28 grams = _____ kg.

(viii) 3 kg 125 g = _____ kg.

(ix) 3 L 45 mL = _____ L.

(x) 40 kL 40 L = _____ kL.

(xi) 87 km 45 m = _____ km.

(xii) 5 m 4 cm = _____ m.

(xiii) $100 - 24.57 =$ _____.

(xiv) $230 + 12.354 =$ _____.

(xv) 0.06 _____ 0.06000.

(xvi) The branch of Mathematics which deals to find perimeter, area, volume is called _____.

(xvii) The amount or measure of region _____ by a closed figure is called its area.

(xviii) The length of the boundary of a figure is called its _____.

(xix) The perimeter of a square = _____.

(xx) The perimeter of a rectangle is _____.

Q3. State whether the given statement is true or false:

(i) Perimeter of a polygon having n sides = $n \times$ side. _____

(ii) If perimeter of a regular heptagon is 35 cm , its one side will be 7 cm. _____

(iii) If area of a square is 9 sq cm, its side will be 4 . _____

(iv) Area of square = Side \times side. _____

(v) Perimeter of a closed figure is the length of the boundary. _____

(vi) 0.2 is the same as 0.200. _____

(vii) $3 + \frac{5}{100} + \frac{3}{1000} = 3.53$ _____

(viii) $7 \text{ m} = 0.07 \text{ cm}$ _____

(ix) Side of a regular pentagon will be 5 cm , if its perimeter is 35 cm. _____

(x) Area can be measured in m^2 . _____

Important Notes:

(i) Perimeter of Rectangle = $2 \times (\text{Length} + \text{Breadth})$

(ii) Perimeter of Square = $4 \times \text{Side}$

(iii) Side of a square = Perimeter $\div 4$

(iv) Side =
$$\frac{\text{Perimeter}}{\text{Number of sides}}$$

(v) **Length of a rectangle, if perimeter and breadth is given:**

$$\text{Length} = (\text{Perimeter} \div 2) - \text{Breadth}$$

(vi) **Breadth of a rectangle, if perimeter and length is given:**

$$\text{Breadth} = (\text{Perimeter} \div 2) - \text{Length}$$

(vii) Total fencing required = Perimeter of given field

(viii) Perimeter =
$$\frac{\text{Total cost of fencing or cost of boundary wall}}{\text{Cost per metre}}$$

(ix) Area of Rectangle = Length \times Breadth

(x) Length = Area of Rectangle \div Breadth

(xi) Breadth= Area of Rectangle \div Length

(xii) Area of square = Side x Side

(xiii) Number of tiles required = $\frac{\text{Area of hall or path}}{\text{Area of 1 tile}}$

(xiv) Area = $\frac{\text{Total cost of flooring}}{\text{Cost per square metre}}$

Shape	No. of sides
Pentagon	5
Hexagon	6
Heptagon	7
Octagon	8
Nonagon	9
Decagon	10